» » » » Программирование. Принципы и практика использования C++ Исправленное издание - Бьёрн Страуструп

Программирование. Принципы и практика использования C++ Исправленное издание - Бьёрн Страуструп

На нашем литературном портале можно бесплатно читать книгу Программирование. Принципы и практика использования C++ Исправленное издание - Бьёрн Страуструп, Бьёрн Страуструп . Жанр: Программирование. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале litmir.org.
Программирование. Принципы и практика использования C++ Исправленное издание - Бьёрн Страуструп
Название: Программирование. Принципы и практика использования C++ Исправленное издание
Дата добавления: 22 август 2024
Количество просмотров: 98
Читать онлайн

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту readbookfedya@gmail.com для удаления материала

Программирование. Принципы и практика использования C++ Исправленное издание читать книгу онлайн

Программирование. Принципы и практика использования C++ Исправленное издание - читать бесплатно онлайн , автор Бьёрн Страуструп

Специальное издание самой читаемой и содержащей наиболее достоверные сведения книги по C++. Книга написана Бьярне Страуструпом — автором языка программирования C++ — и является каноническим изложением возможностей этого языка.
Помимо подробного описания собственно языка, на страницах книги вы найдете доказавшие свою эффективность подходы к решению разнообразных задач проектирования и программирования. Многочисленные примеры демонстрируют как хороший стиль программирования на С-совместимом ядре C++, так и современный -ориентированный подход к созданию программных продуктов. Третье издание бестселлера было существенно переработано автором. Результатом этой переработки стала большая доступность книги для новичков. В то же время, текст обогатился сведениями и методиками программирования, которые могут оказаться полезными даже для многоопытных специалистов по C++. Не обойдены вниманием и нововведения языка: стандартная библиотека шаблонов (STL), пространства имен (namespaces), механизм идентификации типов во время выполнения (RTTI), явные приведения типов (cast-операторы) и другие.
Настоящее специальное издание отличается от третьего добавлением двух новых приложений (посвященных локализации и безопасной обработке исключений средствами стандартной библиотеки), довольно многочисленными уточнениями в остальном тексте, а также исправлением множества опечаток.
Книга адресована программистам, использующим в своей повседневной работе C++. Она также будет полезна преподавателям, студентам и всем, кто хочет ознакомиться с описанием языка «из первых рук».

Перейти на страницу:
Matrix — одномерной матрицей?

Количество размерностей в объявлении такого объекта можно не указывать, потому что по умолчанию это число равно единице.

Matrix<int,1> a1(8); // a1 — это одномерная матрица целых чисел

Matrix<int> a(8);    // т.е. Matrix<int,1> a(8);

Таким образом, объекты a и a1 имеют одинаковый тип (Matrix<int,1>). У каждого объекта класса Matrix можно запросить общее количество элементов и количество элементов в определенном измерении. У одномерного объекта класса Matrix эти параметры совпадают.

a.size(); // количество элементов в объекте класса Matrix

a.dim1(); // количество элементов в первом измерении

Можно также обращаться к элементам матрицы, используя схему их размещения в памяти, т.е. через указатель на ее первый элемент.

int* p = a.data(); // извлекаем данные с помощью указателя на массив

Это полезно при передаче объектов класса Matrix функциям в стиле языка C, принимающим указатели в качестве аргументов. Матрицы можно индексировать.

a(i);   // i-й элемент (в стиле языка Fortran) с проверкой

        // диапазона

a[i];   // i-й элемент (в стиле языка C) с проверкой диапазона

a(1,2); // ошибка: a — одномерный объект класса Matrix

Многие алгоритмы обращаются к части объекта класса Matrix. Эта часть называется срезкой и создается функцией slice() (часть объекта класса Matrix или диапазон элементов). В классе Matrix есть два варианта этой функции.

a.slice(i); // элементы, начиная с a[i] и заканчивая последним

a.slice(i,n); // n элементов, начиная с a[i] и заканчивая a[i+n–1]

Индексы и срезки можно использовать как в левой части оператора присваивания, так и в правой. Они ссылаются на элементы объекта класса Matrix, не создавая их копии. Рассмотрим пример.

a.slice(4,4) = a.slice(0,4); // присваиваем первую половину матрицы

                             // второй

Например, если объект a вначале выглядел так:

{ 1 2 3 4 5 6 7 8 }

то получим

{ 1 2 3 4 1 2 3 4 }

Обратите внимание на то, что чаще всего срезки задаются начальными и последними элементами объекта класса Matrix; т.е. a.slice(0,j) — это диапазон [0:j], а a.slice(j) — диапазон [j:a.size()]. В частности, приведенный выше пример можно легко переписать:

a.slice(4) = a.slice(0,4); // присваиваем первую половину матрицы

                           // второй

Иначе говоря, обозначения — дело вкуса. Вы можете указать такие индексы i и n, так что a.slice(i,n) выйдет за пределы диапазона матрицы a. Однако полученная срезка будет содержать только те элементы, которые действительно принадлежат объекту a. Например, срезка a.slice(i,a.size()) означает диапазон [i:a.size()], а a.slice(a.size()) и a.slice(a.size(),2) — это пустые объекты класса Matrix. Это оказывается полезным во многих алгоритмах. Мы подсмотрели это обозначение в математических текстах. Очевидно, что срезка a.slice(i,0) является пустым объектом класса Matrix. Нам не следовало бы писать это намеренно, но существуют алгоритмы, которые становятся проще, если срезка a.slice(i,n) при параметре n, равном 0, является пустой матрицей (это позволяет избежать ошибки).

 

 Копирование всех элементов выполняется как обычно.

Matrix<int> a2 = a;  // копирующая инициализация

a = a2;              // копирующее присваивание

 

 К каждому элементу объекта класса Matrix можно применять встроенные операции.

a *= 7;   // пересчет: a[i]*=7 для каждого i (кроме того, +=, –=, /=

          // и т.д.)

a = 7;    // a[i]=7 для каждого i

Это относится к каждому оператору присваивания и каждому составному оператору присваивания (=, +=, –=, /=, *=, %=, ^=, &=, |=, >>=, <<=) при условии, что тип элемента поддерживает соответствующий оператор. Кроме того, к каждому элементу объекта класса Matrix можно применять функции.

a.apply(f);    // a[i]=f(a[i]) для каждого элемента a[i]

a.apply(f,7);  // a[i]=f(a[i],7) для каждого элемента a[i]

Составные операторы присваивания и функция apply() модифицируют свои аргументы типа Matrix. Если же мы захотим создать новый объект класса Matrix, то можем выполнить следующую инструкцию:

b = apply(abs,a); // создаем новый объект класса Matrix

                  // с условием b(i)==abs(a(i))

Функция abs — это стандартная функция вычисления абсолютной величины (раздел 24.8). По существу, функция apply(f,x) связана с функцией x.apply(f) точно так же, как оператор + связан с оператором +=. Рассмотрим пример.

b = a*7;        // b[i] = a[i]*7 для каждого i

a *= 7;         // a[i] = a[i]*7 для каждого i

y = apply(f,x); // y[i] = f(x[i]) для каждого i

x.apply(f);     // x[i] = f(x[i]) для каждого i

В результате a==b и x==y.

 

 В языке Fortran второй вариант функции apply называется функцией пересылки (“broadcast” function). В этом языке чаще пишут вызов f(x), а не apply(f,x). Для того чтобы эта возможность стала доступной для каждой функции f (а не только для отдельных функций, как в языке Fortran), мы должны присвоить операции пересылки конкретное имя, поэтому (повторно) использовали имя apply.

Кроме того, для того чтобы обеспечить соответствие с вариантом функции-члена apply, имеющим вид a.apply(f,x), мы пишем

b = apply(f,a,x); // b[i]=f(a[i],x) для каждого i

Рассмотрим пример.

double scale(double d, double s) { return d*s; }

b = apply(scale,a,7); // b[i] = a[i]*7 для каждого i

Обратите внимание на то, что “автономная” функция apply() принимает в качестве аргумента функцию, вычисляющую результат по ее аргументам, а затем использует этот результат для инициализации итогового объекта класса Matrix. Как правило, это не приводит к изменению объекта класса Matrix, к которому эта функция применяется. В то же время функция-член apply() отличается тем, что принимает в качестве аргумента функцию, модифицирующую ее аргументы; иначе говоря, она модифицирует элементы объекта класса Matrix, к которому применяется. Рассмотрим пример.

void scale_in_place(double& d, double s) { d *= s; }

b.apply(scale_in_place,7); // b[i] *= 7 для

Перейти на страницу:
Комментариев (0)