int send_mess_to_server(message_db_t mess_to_send) {
struct msg_passed my_msg;
#if DEBUG_TRACE
printf("%d send_mess_to_server()n", getpid());
#endif
my_msg.real_message = mess_to_send;
my_msg.msg_key = mess_to_send.client_pid;
if (msgsnd(serv_qid, (void *)&my_msg, sizeof(mess_to_send) , 0) == -1) {
perror("Message send failed");
return(0);
}
return(1);
}
4. При получении сообщения от сервера клиент использует ID процесса для получения только сообщений, адресованных ему, пропуская сообщения, предназначенные другим клиентам.
int read_resp_from_server(message_db_t *rec_ptr) {
struct msg_passed mymsg;
#if DEBUG_TRACE
printf("%d :- read_resp_from_server()n", getpid());
#endif
if (msgrcv(cli_qid, (void *)&my_msg, sizeof(*rec_ptr), getpid(), 0) == -1) {
return(0);
}
*rec_ptr = my_msg.real_message;
return(1);
}
5. Для сохранения совместимости с файлом pipe_imp.c необходимо объявить четыре дополнительные функции. Но в вашей программе они будут пустыми. Операции, которые они реализовывали в случае применения каналов, больше не нужны.
int start_resp_to_client(const message_db_t mess_to_send) {
return(1);
}
void end_resp_to_client(void) {}
int start_resp_from_server(void) {
return(1);
}
void end_resp_from_server(void) {}
Теперь вы можете просто запустить сервер, выполняющий в фоновом режиме реальное сохранение и извлечение данных, и затем выполнить клиентское приложение для подключения к серверу с помощью сообщений.
Все, что вы должны сделать, — это заменить интерфейсные функции из главы 11 другой реализацией, применяющей очереди сообщений. Преобразование приложения для использования очередей сообщений показывает мощь этого средства IPC, т.к. вам требуется меньше функций, чем в случае применения каналов, и даже эти необходимые функции гораздо проще, чем в предыдущей версии приложения.
Несмотря на то, что для соответствия требованиям X/Open этого не требуется, большинство систем Linux предоставляет набор команд, обеспечивающих доступ к данным IPC в режиме командной строки и удаление потерянных средств IPC. Существуют команды ipcs и ipcrm, очень полезные при разработке программ.
Один из досадных недостатков средств IPC состоит в том, что плохо написанная программа или программа, по какой-либо причине завершившаяся аварийно, может оставить свои ресурсы IPC (например, данные в очереди сообщений) еще долго блуждающими в системе без определенной цели после завершения программы. Такое поведение может привести к аварийному завершению нового запуска программы, поскольку она рассчитывает начать выполнение в очищенной системе, а на самом деле находит эти блуждающие ресурсы. Команды состояния (ipcs) и удаления (ipcrm) позволяют проверить систему и очистить ее от ненужных средств IPC.
Отображение состояния семафора
Для проверки состояния семафоров в системе примените команду ipcs -s. Если какие-то семафоры присутствуют, вывод команды будет выглядеть следующим образом:
$ ipcs -s
------ Semaphore Arrays ------
key semid owner perms nsems
0x4d00df1a 768 rick 666 1
Для удаления семафоров, случайно оставленных программами, вы можете использовать команду ipcrm. Для удаления только что отображенного семафора примените (в Linux) следующую команду:
$ ipcrm -s 768
В некоторых более старых системах Linux используется несколько иной синтаксис команды:
$ ipcrm sem 768
Но этот устаревший стиль редко встречается в наше время. Формат, подходящий для вашей конкретной системы, ищите на страницах интерактивного справочного руководства.
Отображение состояния совместно используемой памяти
Многие системы предоставляют программы режима командной строки для доступа не только к сведениям о семафорах, но и к подробным данным совместно используемой памяти. К ним относятся команды ipcs -m и ipcrm -m <id> (или ipcrm shm <id>).
Далее приведен пример вывода команды ipcs -m:
$ ipcs -m
------ Shared Memory Segments ------
key shmid owner perms bytes nattch status
0x00000000 384 rick 666 4096 2 dest
Здесь показан единственный сегмент совместно используемой памяти объемом 4 Кбайт, присоединенный к двум процессам.
Команда ipcrm -m <id> позволяет удалить совместно используемую память. Она бывает полезной, когда программа завершается аварийно при попытке убрать такую память.
Отображение состояния очереди сообщений
Для очередей сообщений предназначены команды ipcs -q и ipcrm -q <id> (или ipcrm msg <id>).
Далее приведен пример вывода команды ipcs -q:
$ ipcs -q
------ Message Queues ------
key msqid owner perms used-bytes messages
0x000004d2 3384 rick 666 2048 2
В нем показаны в очереди сообщений два сообщения общим объемом 2048 байтов. Команда ipcrm -q <id> позволяет удалить очередь сообщений.
В этой главе вы познакомились с тремя разновидностями средств взаимосвязи процессов, которые стали широко применяться в ОС UNIX System V.2 и были доступны в системе Linux, начиная с ранних версий ее дистрибутивов. Вы рассмотрели предлагаемые ими сложные функциональные возможности и, после того как поняли принципы их функционирования, оценили обеспечиваемое ими эффективное решение для удовлетворения многих потребностей межпроцессного взаимодействия.
В этой главе вы познакомитесь с еще одним способом взаимодействия процессов, существенно отличающимся от тех, которые мы обсуждали в главах 13 и 14. До настоящего момента все рассматриваемые нами средства основывались на совместно используемых ресурсах одного компьютера. Ресурсы могли быть разными: областью файловой системы, сегментами совместно используемой памяти или очередями сообщений, но использовать их могли только процессы, выполняющиеся на одной машине.
В версию ОС Berkeley UNIX было включено новое средство коммуникации — интерфейс сокетов, — являющееся расширением концепции канала, обсуждавшейся в главе 13. В системах Linux также есть интерфейсы сокетов.
Вы можете применять сокеты во многом так же, как каналы, но они поддерживают взаимодействие в пределах компьютерной сети. Процесс на одной машине может использовать сокеты для взаимосвязи с процессом на другом компьютере, что делает возможным существование клиент-серверных систем, распределенных в сети. Процессы, выполняющиеся на одной машине, также могут применять сокеты.
Кроме того, интерфейс сокетов стал доступен в ОС Windows благодаря общедоступной спецификации Windows Sockets или WinSock. Сервисы сокетов в ОС Windows предоставляются системным файлом Winsock.dll. Стало быть, программы под управлением Windows могут взаимодействовать по сети с компьютерами под управлением Linux и UNIX и наоборот, реализуя, таким образом, клиент-серверные системы. Несмотря на то, что программный интерфейс для WinSock не совпадает полностью с интерфейсом сокетов в UNIX, в основе его лежат те же сокеты.
В одной-единственной главе мы не сможем дать исчерпывающее описание всех многообразных сетевых возможностей Linux, поэтому вы найдете здесь лишь основные программные сетевые интерфейсы, которые позволят вам писать собственные программы, работающие в сети.
Более подробно мы рассмотрим следующие темы:
□ как действует соединение с помощью сокетов;
□ атрибуты сокетов, адреса и обмен информацией;
□ сетевая информация и интернет-демон (inetd/xinetd);
□ клиенты и серверы.
Сокет — это средство связи, позволяющее разрабатывать клиент-серверные системы для локального, на одной машине, или сетевого использования. Функции ОС Linux, такие как вывод, подключение к базам данных и обслуживание Web-страниц, равно как и сетевые утилиты, например rlogin, предназначенная для удаленной регистрации, и ftp, применяемая для передачи файлов, обычно используют сокеты для обмена данными.
Сокеты создаются и используются не так, как каналы, потому что они подчеркивают явное отличие между клиентом и сервером. Механизм сокетов позволяет создавать множество клиентов, присоединенных к единственному серверу.
Соединения на базе сокетов
Соединения на базе сокетов можно рассматривать как телефонные звонки в учреждение. Телефонный звонок поступает в организацию, и на него отвечает секретарь приемной, направляющий вызов в соответствующий отдел (серверный процесс) и оттуда к нужному сотруднику (сокет сервера). Каждый входящий телефонный звонок (клиент) направляется к соответствующей конечной точке, и промежуточные операторы могут заниматься последующими телефонными звонками. Прежде чем рассматривать установку соединений с помощью сокетов в системах Linux, нужно понять, как они ведут себя в приложениях сокетов, поддерживающих соединения.