» » » » Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня - Евгений Зеленский

Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня - Евгений Зеленский

На нашем литературном портале можно бесплатно читать книгу Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня - Евгений Зеленский, Евгений Зеленский . Жанр: Публицистика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале litmir.org.
Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня - Евгений Зеленский
Название: Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня
Дата добавления: 21 сентябрь 2024
Количество просмотров: 44
Читать онлайн

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту readbookfedya@gmail.com для удаления материала

Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня читать книгу онлайн

Фарма.РФ. Как отечественные компании создают лекарства будущего уже сегодня - читать бесплатно онлайн , автор Евгений Зеленский

Бытует мнение, что все хорошие лекарства — плоды западной мысли и зарубежного производства, в то время как российская фармацевтика не способна даже на качественные копии — дженерики. Головокружительный рост отечественной фармы за последние десятилетия может и должен разрушить эти стереотипные представления. Ведь наших компаний уже сейчас насчитываются сотни. Стремительно растут уровни сложности и объемы производства лекарств для лечения даже самых сложных заболеваний. А несколько флагманов российской фармы работают над молекулами, по своей технологичности не уступающими наиболее передовым разработкам международных компаний из списка Big Pharma. Нам есть чем гордиться! Если вам интересно узнать об индустрии отечественных лекарств, ее истории и достижениях — вы выбрали верную книгу!

1 ... 23 24 25 26 27 ... 37 ВПЕРЕД
Перейти на страницу:
американским ученым Брайаном Сауэром еще в далеком для такой инновационной темы 1987 году. В то время была использована так называемая Cre-Lox-опосредованная рекомбинация, в ходе которой удалось разрезать целевые участки ДНК с помощью специального фермента Cre-рекомбиназы. Но с ранними методами редактирования генома возникло много сложностей, они были очень дорогими и трудоемкими. А заодно, часто и недостаточно точными. Часть этих проблем удалось разрешить уже только в XXI веке.

Современные биотехнологи разрабатывают три основных системы редактирования генов. Первой и самой нашумевшей является технология CRISPR-Cas9. О ней мы скоро поговорим особенно подробно9,10.

Две другие технологии геномного редактирования — это так называемые «цинковые пальцы» и TALEN. Попробуем разобраться в самых общих чертах, что все это из себя представляет.

Цинковые пальцы или сокращенно ZNF (Zinc-finger nucleases — с английского «нуклеазы цинкового пальца») — технология, которая состоит из двух компонентов. Первый — синтетические белки заданной формы с ионом цинка, которые могут связываться с определённым коротким участком ДНК. А второй — нуклеаза, то есть фермент, способный расщеплять в этом выбранном месте ДНК. Вместе они работают как «геномные ножницы», разделяя нуклеотидную последовательность14,15.

TALEN (Transcription activator-like effector nuclease — с английского «эффекторная нуклеаза, подобная активатору транскрипции») работает по схожему принципу. TALE — специальный белок, полученный от растительных бактерий Xanthomonas. А буква «N» в этой аббревиатуре означает нуклеазу, тот самый разрезающий ДНК фермент.

И ZNF, и TALEN — методы, основанные на природных свойствах определенных нуклеаз. Эти ферменты умеют проводить специфическое вырезание участка генома и встраивание на место разреза фрагмента исправленной ДНК, привнесенного с собой. Такой способ позволяет проводить целевые и точечные изменения нарушенных генов, гораздо более точное, чем у предшествующих технологий.

Отличие ZFN и TALEN заключается в использовании разных видов ферментов, но сам общий итог их работы примерно одинаков.

К сожалению, ZFN и TALEN пока не нашли массового применения в медицине, прежде всего из-за значительной сложности этих методов. Для редактирования же генома с помощью системы CRISPR/Cas9 используется единственный белок Cas9. Технология основана на простом принципе комплементарного узнавания нуклеиновых кислот, а все необходимое можно создать за довольно короткое время. Это уровень редактирования, более дешевый и простой14,15.

Так что же такое CRISPR-Cas9? Давайте разбираться!

Долгое время считалось, что бактерии не имеют, в отличие от животных и человека, своей собственной иммунной защиты. В нашем организме за иммунитет отвечает множество клеток, организованных в чрезвычайно сложную молекулярную структуру. Однако, как выяснилось, и у бактерий есть своя, но гораздо более простая система молекулярного иммунитета, обеспечивающая бактериальной клетке защиту от внешних врагов — фагов и других патогенов.

Еще в 1989 г. японские исследователи обнаружили в геноме кишечной палочки участок, содержащий многочисленные повторы. Его назвали CRISPR-локусом (с английского «clustered regularly interspaced short palindromic repeats» — короткие палиндромные повторы, регулярно расположенные группами). Что собственно и дало название будущей технологии.

Их структура была идентична по нуклеотидным последовательностям, а вот у промежутков, или, как их теперь называют, спейсеров (от английского «spacer» — разделитель, вставка), она оказалась вариабельной и часто была гомологичной последовательностям, обнаруженным в геномах фагов и плазмид. По сути, такой участок — это генетическая память популяции бактерий о тех столкновениях с внешним врагом, в борьбе с которым бактериальной клетке удалось выжить и «законспектировать» встречу.

Иными словами, в этих промежутках (спейсерах) закладывается впрок на хранение информация о бактериофагах (вирусы, поражающие бактерий), которая используется бактериями в уникальной системе защиты от губительного воздействия патогенов. В состав этого адаптивного молекулярного иммунитета входят палиндромные повторы, спейсеры и гены специализированных нуклеаз Cas — ферментов, способных вырезать участки нуклеиновых кислот. Примерно аналогичных технологиям, которые мы обсуждали выше10.

Возникает вопрос: почему же нуклеаза помечена именно цифрой 9? Вообще-то, их в бактериальной клетке больше десяти, но наиболее подходящей для функционирования CRISPR-системы оказалась именно Cas9.

В 2012 г. появились первые публикации, описавшие применение технологии CRISPR Cas9 для редактирования генома эукариотов, то есть животных и человека. А в научном языке для его обозначения стали использовать термин «CRISPR-система». С тех пор число статей по этой теме стало расти огромными темпами9–12.

Как оказалось, компоненты CRISPR-системы можно адаптировать к другим геномам, к использованию на клетках человека, и там она будет работать по «навязанной» ей программе. При этом с высокой точностью отыщется любая нуклеотидная последовательность. Например, в геноме человека насчитывается более 3 миллиардов пар нуклеотидов, и на всей этой огромной протяженности возможно разрезать спираль ДНК в точном и конкретном месте, удалить или подправить «плохой», «сломанный» ген и вшить вместо него другой — «здоровый»13,17.

Совсем недавно, в 2020 году, за разработку этого блестящего метода в применении к клеткам человека ученые Дженнифер Даудна и Эммануэль Шарпантье удостоены Нобелевской премии по химии. Сначала на бактерии Streptococcus pyogenes (синегнойная палочка) они установили, как именно работает белок Cas9, а позднее смогли показать, что с помощью такого механизма можно разрезать в заданной точке любую молекулу ДНК, в том числе и ДНК человека17.

Конечно же, создание системы CRISPR-Cas немедленно явилось мощным стимулом ее использования и в нашей стране. Внедрение новой технологии произвело настоящую революцию в области генетической терапии, поскольку она позволяет намного более точно редактировать гены, чем ранее описанные инструменты, проверить ее на животных моделях и вплотную подступить к лечению генетических заболеваний у людей.

Уже показано, что метод CRISPR невероятно полезен при моделировании наследственных болезней, и в первую редких для человеческой популяции. Модели заболеваний, в развитие которых вовлечены множество генов, созданные с помощью CRISPR-системы, дают возможность определить, нокаут (выключение) каких именно генов приводит к тем или иным изменениям в клетках, как из клеток формируются разнообразные ткани с различным генетическим фоном и какие молекулярные события происходят при развитии того или иного патологического процесса. Такие данные позволяют существенно улучшить наше понимание о природе тех или иных заболеваний и, изучив механизмы, лучше подбирать методы терапии.

Еще одна громадная задача, решаемая посредством CRISPR Cas9, — разработка методов лечения вирусных инфекций, например, вируса иммунодефицита человека ВИЧ, после которого клетки становятся невосприимчивыми к ВИЧ, а также коррекция мутаций, обусловливающих различные наследственные заболевания — муковисцидоз, миодистрофию Дюшена, гемофилию, серповидноклеточную анемию и множество других заболеваний10,19,20.

Крупным прорывом в области генной терапии стало сообщение о том, что ученые-клиницисты сохранили жизнь девочке, родившейся с фатальным наследственным нейромышечным заболеванием — спинальной мышечной атрофией 1го типа. При этом страшном генетическом заболевании возникает нарастающая мышечная слабость и у пациента прогрессивно снижается способность мышц к сокращению. По мере прогрессирования болезни возникают непреодолимые нарушения дыхания

1 ... 23 24 25 26 27 ... 37 ВПЕРЕД
Перейти на страницу:
Комментариев (0)